99 research outputs found

    A concrete certificateless signature scheme without pairings

    Get PDF
    Certificateless public key cryptography was introduced to avoid the inherent key escrow problem in identity-based cryptography, and eliminate the use of certificates in traditional PKI. Most cryptographic schemes in certificateless cryptography are built from bilinear mappings on elliptic curves which need costly operations. Despite the investigation of certificateless public key encryption without pairings, certificateless signature without pairings received much less attention than what it deserves. In this paper, we present a concrete pairing-free certificateless signature scheme for the first time. Our scheme is more computationally efficient than others built from pairings. The new scheme is provably secure in the random oracle model assuming the hardness of discrete logarithm problem

    Frequency Domain Based Analysis and Design of Norm-Optimal Iterative Learning Control

    Full text link
    In this thesis, novel frequency domain based analysis and design methods on Norm-Optimal Iterative Learning Control (NO-ILC) are developed for Single-Input-Single-Output (SISO) Linear Time Invariant (LTI) systems. Modeling errors in general degrade the convergence performance of NO-ILC and hence ensuring Robust Monotonic Convergence (RMC) against model uncertainties is important. Although the robustness of NO-ILC has been studied in the literature, determining the allowable range of modeling errors for a given NO-ILC design is still an open research question. To fill this gap, a frequency domain analysis with a multiplicity formulation of model uncertainty is developed in this work to quantify and visualize the allowable modeling errors. Compared with the traditional formulation, the proposed new uncertainty formulation provides a less conservative representation of the allowable model uncertainty range by taking additional phase information into account and thus allows for a more complete evaluation of the robustness of NO-ILC. The analysis also clarifies how the RMC region changes as a function of NO-ILC weighting terms and therefore leads to several frequency domain design tools to achieve RMC for given model uncertainties. Along with this frequency domain analysis, rather than some qualitative understanding in the literature, an equation quantitatively characterizing the fundamental trade-off of NO-ILC with respect to robustness, convergence speed and steady state error at each frequency is presented, which motivates the proposed loop-shaping like design methods for NO-ILC to achieve different performance requirements at various frequencies. The proposed analysis also demonstrates that NO-ILC is the optimal solution for general LTI ILC updating laws in the scope of balancing the trade-off between robustness, convergence speed and steady state error.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137007/1/gexinyi_1.pd

    High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries.

    Get PDF
    The application of graphene for electrochemical energy storage has received tremendous attention; however, challenges remain in synthesis and other aspects. Here we report the synthesis of high-quality, nitrogen-doped, mesoporous graphene particles through chemical vapor deposition with magnesium-oxide particles as the catalyst and template. Such particles possess excellent structural and electrochemical stability, electronic and ionic conductivity, enabling their use as high-performance anodes with high reversible capacity, outstanding rate performance (e.g., 1,138 mA h g-1 at 0.2 C or 440 mA h g-1 at 60 C with a mass loading of 1 mg cm-2), and excellent cycling stability (e.g., >99% capacity retention for 500 cycles at 2 C with a mass loading of 1 mg cm-2). Interestingly, thick electrodes could be fabricated with high areal capacity and current density (e.g., 6.1 mA h cm-2 at 0.9 mA cm-2), providing an intriguing class of materials for lithium-ion batteries with high energy and power performance

    一种基于铁纳米簇的新型可视化葡萄糖传感器

    Get PDF
    In this paper, a novel fluorescent sensor for glucose detection based on fluorescent iron clusters (Fe NCs) and glucose oxidase is developed. With the increase of glucose concentration, the red fluorescence of iron nanoclusters decreases gradually, and the glucose content can be detected in the range of 0– 100 μmol·L–1. In addition, in order to facilitate the detection of glucose, this paper investigated the coating of Fe NCs and glucose oxidase by agarose and further preparation of agarose gel test strip for glucose detection. Under ultraviolet lamp, the change of glucose content can be identified through the color change of agarose gel

    Subsequent cooling-circulation after radiofrequency and microwave ablation avoids secondary indirect damage induced by residual thermal energy

    Get PDF
    PURPOSEWe aimed to investigate the exact role of residual thermal energy following microwave ablation (MWA) and radiofrequency ablation (RFA) at the final ablation and transition zones and determine whether residual thermal energy could be dissipated by subsequent cooling-circulation.METHODSIn an ex vivo study, MWA and RFA were performed on fresh porcine liver, and central and border temperatures were compared. In an in vivo study, MWA and RFA were performed to the livers of New Zealand white rabbits. Tissue samples were stained with α-NADH-diaphorase. The coagulation zones (NADH-negative) and transition zones (lightly NADH-stained) of different groups were compared at different time points.RESULTSIn the ex vivo model, the residual thermal energy after MWA and RFA could be dispersed by subsequent cooling-circulation due to the temperature decreasing rapidly. In the in vivo study, the coagulation volume in the ablation group was larger than that in the cooling-circulation group (P < 0.05) 2 days after ablation. In the ablation group, the damaged zone (the transition zone plus the coagulation zone) on α-NADH-diaphorase-stained images increased rapidly within 2 hours after ablation and slowly reached the maximum on day 2. However, the damaged zones did not change significantly at the three time points observed in the cooling-circulation group.CONCLUSIONThe residual thermal energy in MWA and RFA induced secondary damage beyond the direct coagulation zone, and it could be dissipated by subsequent cooling-circulation, contributing to smaller ablation and transition zones

    Development and verification of a combined immune- and cancer-associated fibroblast related prognostic signature for colon adenocarcinoma

    Get PDF
    IntroductionTo better understand the role of immune escape and cancer-associated fibroblasts (CAFs) in colon adenocarcinoma (COAD), an integrative analysis of the tumor microenvironment was performed using a set of 12 immune- and CAF-related genes (ICRGs).MethodsUnivariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to establish a prognostic signature based on the expression of these 12 genes (S1PR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4, PCAT6, FABP4, KIF15, ZNF792, CD1B and GLP2R). This signature was validated in both internal and external cohorts and was found to have a higher C-index than previous COAD signatures, confirming its robustness and reliability. To make use of this signature in clinical settings, a nomogram incorporating ICRG signatures and key clinical parameters, such as age and T stage, was developed. Finally, the role of S1PR5 in the immune response of COAD was validated through in vitro cytotoxicity experiments.ResultsThe developed nomogram exhibited slightly improved predictive accuracy compared to the ICRG signature alone, as indicated by the areas under the receiver operating characteristic curves (AUC, nomogram:0.838; ICRGs:0.807). The study also evaluated the relationships between risk scores (RS) based on the expression of the ICRGs and other key immunotherapy variables, including immune checkpoint expression, immunophenoscore (IPS), and microsatellite instability (MSI). Integration of these variables led to more precise prediction of treatment efficacy, enabling personalized immunotherapy for COAD patients. Knocking down S1PR5 can enhance the efficacy of PD-1 monoclonal antibody, promoting the cytotoxicity of T cells against HCT116 cells ((p&lt;0.05).DiscussionThese findings indicate that the ICRG signature may be a valuable tool for predicting prognostic risk, evaluating the efficacy of immunotherapy, and tailoring personalized treatment options for patients with COAD

    Functional MRI-specific alterations in frontoparietal network in mild cognitive impairment: an ALE meta-analysis

    Get PDF
    BackgroundMild cognitive impairment (MCI) depicts a transitory phase between healthy elderly and the onset of Alzheimer's disease (AD) with worsening cognitive impairment. Some functional MRI (fMRI) research indicated that the frontoparietal network (FPN) could be an essential part of the pathophysiological mechanism of MCI. However, damaged FPN regions were not consistently reported, especially their interactions with other brain networks. We assessed the fMRI-specific anomalies of the FPN in MCI by analyzing brain regions with functional alterations.MethodsPubMed, Embase, and Web of Science were searched to screen neuroimaging studies exploring brain function alterations in the FPN in MCI using fMRI-related indexes, including the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity. We integrated distinctive coordinates by activating likelihood estimation, visualizing abnormal functional regions, and concluding functional alterations of the FPN.ResultsWe selected 29 studies and found specific changes in some brain regions of the FPN. These included the bilateral dorsolateral prefrontal cortex, insula, precuneus cortex, anterior cingulate cortex, inferior parietal lobule, middle temporal gyrus, superior frontal gyrus, and parahippocampal gyrus. Any abnormal alterations in these regions depicted interactions between the FPN and other networks.ConclusionThe study demonstrates specific fMRI neuroimaging alterations in brain regions of the FPN in MCI patients. This could provide a new perspective on identifying early-stage patients with targeted treatment programs.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023432042, identifier: CRD42023432042

    PAR6, A Potential Marker for the Germ Cells Selected to Form Primordial Follicles in Mouse Ovary

    Get PDF
    Partitioning-defective proteins (PAR) are detected to express mainly in the cytoplast, and play an important role in cell polarity. However, we showed here that PAR6, one kind of PAR protein, was localized in the nuclei of mouse oocytes that formed primordial follicles during the perinatal period, suggesting a new role of PAR protein. It is the first time we found that, in mouse fetal ovaries, PAR6 appeared in somatic cell cytoplasm and fell weak when somatic cells invaded germ cell cysts at 17.5 days post coitus (dpc). Meanwhile, the expression of PAR6 was observed in cysts, and became strong in the nuclei of some germ cells at 19.5 dpc and all primordial follicular oocytes at 3 day post parturition (dpp), and then obviously declined when the primordial follicles entered the folliculogenic growth phase. During the primordial follicle pool foundation, the number of PAR6 positive germ cells remained steady and was consistent with that of formed follicles at 3 dpp. There were no TUNEL (apoptosis examination) positive germ cells stained with PAR6 at any time studied. The number of follicles significantly declined when 15.5 dpc ovaries were treated with the anti-PAR6 antibody and PAR6 RNA interference. Carbenoxolone (CBX, a known blocker of gap junctions) inhibited the expression of PAR6 in germ cells and the formation of follicles. Our results suggest that PAR6 could be used as a potential marker of germ cells for the primordial follicle formation, and the expression of PAR6 by a gap junction-dependent process may contribute to the formation of primordial follicles and the maintenance of oocytes at the diplotene stage

    SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners

    Get PDF
    Background: The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology. Results: We have developed a web-based tool ‘‘Sequence-based Protein Partners Search’ ’ (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server. Conclusions: SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public a
    corecore